Templated mutagenesis in bacteriophage T4 involving imperfect direct or indirect sequence repeats.

نویسندگان

  • Gary E Schultz
  • John W Drake
چکیده

Some mutations arise in association with a potential sequence donor that consists of an imperfect direct or reverse repeat. Many such mutations are complex; that is, they consist of multiple close sequence changes. Current models posit that the primer terminus of a replicating DNA molecule dissociates, reanneals with an ectopic template, extends briefly, and then returns to the cognate template, bringing with it a locally different sequence; alternatively, a hairpin structure may form the mutational intermediate when processed by mismatch repair. This process resembles replication repair, in which primer extension is blocked by a lesion in the template; in this case, the ectopic template is the other daughter strand, and the result is error-free bypass of the lesion. We previously showed that mutations that impair replication repair can enhance templated mutagenesis. We show here that the intensity of templated mutation can be exquisitely sensitive to its local sequence, that the donor and recipient arms of an imperfect inverse repeat can exchange roles, and that double mutants carrying two alleles, each affecting both templated mutagenesis and replication repair, can have unexpected phenotypes. We also record an instance in which the mutation rates at two particular sites change concordantly with a distant sequence change, but in a manner that appears unrelated to templated mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The specificity of topoisomerase-mediated DNA cleavage defines acridine-induced frameshift specificity within a hotspot in bacteriophage T4.

Acridine-induced frameshift mutations in bacteriophage T4 occur at the precise location in the DNA at which acridines stimulate DNA cleavage by the T4-encoded type II topoisomerase in vitro. The mutations are duplications or deletions that begin precisely at the broken phosphodiester bond. In vivo, acridine-induced frameshift mutagenesis is reduced nearly to background levels when the topoisome...

متن کامل

Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events.

Strand misalignments at DNA repeats during replication are implicated in mutational hotspots. To study these events, we have generated strains carrying mutations in the Escherichia coli chromosomal lacZ gene that revert via deletion of a short duplicated sequence or by template switching within imperfect inverted repeat (quasipalindrome, QP) sequences. Using these strains, we demonstrate that m...

متن کامل

A Role for Non-B DNA Forming Sequences in Mediating Microlesions Causing Human Inherited Disease.

Missense/nonsense mutations and microdeletions/microinsertions (<21 bp) represent ∼ 76% of all mutations causing human inherited disease, and their occurrence has been associated with sequence motifs (direct, inverted, and mirror repeats; G-quartets) capable of adopting non-B DNA structures. We found that a significant proportion (∼ 21%) of both microdeletions and microinsertions occur within d...

متن کامل

Ligase-defective bacteriophage T4. I. Effects on mutation rates.

Temperature-sensitive mutations in bacteriophage T4 gene 30 (polynucleotide ligase) were examined for their effects on spontaneous and proflavine-induced frameshift mutagenesis in the rII and ac (acridine resistance) cistrons. Only small (fourfold or less) effects on mutation rates were observed, even when selection artifacts involving suppression of gene 30 mutations by rII mutations were take...

متن کامل

On the role of homologous sequences in chromosomal rearrangements.

Deletions and other chromosomal rearrangements can be generated by recombination between repeated sequences. It has been shown in a number of systems that the probability of exchange or gene conversion decreases with increasing distance between repeats. This paper examines the question of how repeats find each other, using deletion formation in bacteriophage T4 as a model system. Homologous seq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 178 2  شماره 

صفحات  -

تاریخ انتشار 2008